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Chromatography in a Bed of Spheres 

J. F. G. REIS, E. N. LIGHTFOOT, P. T. NOBLE, 
and A. S. CHIANG 
DEPARTMENT OF CHEMICAL ENGINEERING 

UNIVERSITY OF WISCONSIN 
MADISON, WISCONSIN 53706 

Abstract 

A computationally efficient method is presented for calculating the combined 
effects of intraparticle diffusion, interphase mass-transfer resistance, and fluid- 
phase axial dispersion for chromatography in a column of uniform regularly 
packed spheres. The method uses an extension of the generalized Sturm- 
Liouville theory of Ramkrishna and Amundson to adapt the Taylor-Gill- 
Subramanian dispersion analysis to two-phase systems. The primary utility 
of the analysis is to determine the importance of diffusional transients and 
to obtain asymptotic limiting behavior for very long columns. Simple closed- 
form solutions are given for this limiting condition. Our analysis suggests 
that the transients neglected in presently used lumped-parameter analyses are 
in fact often small, especially for small packing diameter and low flow rates. 
In addition, the Glueckauf and Coates approximation for internal diffusional 
resistance is found to be a valid asymptotic limit. However, conditions do arise 
in practice where transients should be considered. 

INTRODUCTION 

It is the objective of this development to estimate the combined effects 
of intraparticle diffusion, fluid-phase boundary-layer mass-transfer 
resistance, and axial dispersion in a chromatographic column. To do this 
we idealize the column as a regular array of uniform homogeneous spheres 
and assume the mass transfer to be described by 
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368 RElS ET AL. 

with 

where z = distance of any sphere center from column entrance 
r = distance from center of any sphere 

R = sphere radius 
t = time 

c, = c,(z, t )  = bulk fluid-phase composition 
c, = cs(r, z, t )  = local solid-phase composition 

cSR = c,(R, z, t )  = surface composition of the solid phase 
c,, = volume-average composition of the solid phase 

uo = interstitial mean fluid velocity in the z-direction 
E = fractional fluid volume in column 
d = effective fluid-phase dispersion coefficient, assumed known 
gS = effective binary solute diffusivity in the solid phase 
k,  = fluid-phase (boundary-layer) mass transfer coefficient, assumed 

known 
a = interfacial area per unit volume of column = 3(1 - E ) / R  
CI = the equilibrium ratio of fluid to solid-phase concentration, 

normally a function of c, or c, 

Integration of Eqs. (1) through (4) has proven to be a formidable task, 
even for constant values of all parameters, and, so far as we are aware, 
no serious attempt to use more complex models has yet been made. 

A formal analytical solution to these equations has been provided by 
Amundson ( I ,  2), but its complexity appears to have prevented its wide- 
spread use. Instead it has been the practice to use one of a number of 
available approximations in which at least one of the terms in the above 
description has been substantially modified. 

Most frequently [see, however, Rosen (3,411 the internal diffusional 
resistance of the solid is represented by a lumped-parameter approximation 
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CHROMATOGRAPHY IN A BED OF SPHERES 369 

of the form 

It is furthermore the custom to assume 

k, = 5BS/R (6) 
Equation (6), which appears first to have been suggested by Glueckauf 
and Coates (5) [See also Helfferich (6, p. 286)], is the correct asymptotic 
expression for constant solute flux at the sphere surface. We shall have 
more to say about this equation later. 

In addition to the simplification represented by Eq. (9, it is a common 
practice either to assume d to be zero or kc and k, to be infinite. However, 
it may be shown that for sufficiently long columns the effects of axial 
dispersion and mass-transfer resistance are additive (7). The higher- 
order coupling of eddy dispersion and diffusion described by Giddings 
(11) cannot be treated quantitatively by any model using a uniform 
packing. Either a dispersion or mass-transfer limited model may be used: 

& -* &tot d + &,iff (7) 
1 

We shall also have more to say about these approximations. 
An alternate approach has been to use the method of moments to 

obtain approximations to integral concentration profiles. This appears 
to have been done first by Smith and colleagues (see, for example, Ref. 
8) for short feed pulses and has since been used by many others (9). It 
has been shown by Knight (10) that Eqs. (7) and (8) are equivalent to a 
second-moment analysis, which is the highest order normally attempted. 

For linear systems (concentration-independent ct) a large number of 
useful asymptotic expressions is available for approximating the integral 
profiles (ZI). These are particularly useful for investigating the effects of 
approximations made at the microscopic level of Eqs. (1)-(8) at low com- 
putational cost. 

Below we suggest an alternate approach based on the Gill-Subramanian 
expansion (22) and the generalized Sturm-Liouville theory of Ramkrishna 
and Amundson (13) which permits very high-order approximations at 
low computational cost. It is a natural extension of a previous analysis 
of transient transport in cylindrically symmetric systems by our group 
(14). 
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370 RElS E l  AL. 

We begin by expressing concentration anywhere in the system by 

where 
E = EC, + (1 - E)CSm 

Our immediate purpose then is to obtain expressions for the f,, and to 
do this it will prove convenient to use scaled variables. 

We thus rewrite our description in the form 

where d,, 0, = cf/co, c,/c, 
z = t&/R2 
[ = (z/R)(b/voR) = z /RP 
q = r/R 

N = k,aR2/E& 
M = k,R/g ,  
P = u,R/& = fluid-phase PCclet number 
Q = gsld 

and co is a reference concentration to be chosen. We see then that the 
behavior of this system is governed by the five dimensionless parameters 
N,  M ,  P, Q, and a. 

Equation (9) may now be replaced by the two relations 

where 0 is E/co and 

h,(z) = (RP)-"' (fluid region) (16) 

gn(q, T) = (RP)-Yn (solid region) (17) 
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CHROMATOGRAPHY IN A BED OF SPHERES 37 I 

Note that for our model the& are functions only of time in the fluid region. 
We next note that Eqs. (1) and (2) may be added to obtain 

in terms of our scaled variables. The fluid-phase concentration may be 
eliminated from Eq. (18) to obtain 

which completes our restatement of the problem. 
The strategy we shall follow to obtain concentration profiles is as 

follows: (a) Determine sufficient hn and gn for desired accuracy in deter- 
mining 8, and tJs from Eqs. (14) and (15), and to permit integration of 
Eq. (19). A systematic procedure for doing this is developed in the next 
section. (b) Integrate Eq. (19) to obtain d(z, t )  to the desired accuracy 
and for boundary conditions of physical interest. This is done in the 
section entitled “Macroscopic Description of Column Performance.” 

Finally, in the section entitled “Quantitative Aspects : The Importance 
of Transients” we discuss the significance of our results. 

DETERMINATION OF T H E  RADIAL 
DlSTRl B UTlO N F U  N CTI 0 N S  

We begin by putting Eq. (15) into (12) to obtain 

We next eliminate the time derivative from this expression with the aid 
of Eq. (19). We thus obtain 

Equating coefficients of like spatial derivatives yields 
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where 

RElS ET AL. 

ro = 0 (24) 

ri = &hog0 (25) 

(26) 
r2 = &hog, - E g o ( p  h0 - h l )  

and so forth. Experience with this approach (12) shows that only go 
and g1 are normally significant, and that terms of higher order than 
g2 should be truly negligible under conditions of probable interest in 
chromatographic operations. 

Equation (22) is satisfied by 

(27) 
agn - + Lg, = r, 

and it is clear from Eqs. (24)-(26) that the r, contain only terms in g of 
lower order. We may thus solve the individual equations represented by 
(27) by proceeding in sequence. In general, however, the r, contain con- 
tributions from the h,, and we therefore must obtain descriptions of these. 

These may be obtained by putting Eq. (14) into (1 1) and again elimi- 
nating the resulting time derivative via Eq. (19). Once again collecting 
like spatial derivatives, we obtain 

a7 

which is again satisfied by 

where 

S1 = Eh,2 - ho + N[ag,(l ,  z) - h,] (3 1) 

and so forth. 
It remains to write initial and boundary conditions for the distribution 

functions, including matching conditions for the gn and h,. We begin 
with those conditions fixed by the nature of the system. At q = 0, 

agnlaq = 0 (32) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



CHROMATOGRAPHY IN A BED OF SPHERES 373 

At ~ = 1 ,  

agn/aq = -M(xgn - h n )  (33) 
Equation (32) is a requirement of system symmetry, and Eq. (33) follows 
directly from Eq. (13). 

As an initial condition we shall assume all solute to be in the mobile 
phase and normalized so that <fo) is unity: 

gn(U, 0) = 0 (34) 

where 

=o, n # O  

This choice specializes our development, but it offers the advantage of 
yielding specific results. Extension of results below to other initial condi- 
tions is straightforward. 

The Zero-Order Functions go and ho 
For these the above description reduces to 

with 
go(% 0) = 0 (38) 

agolatllo = 0 (39) 

h,(O) = I/& (40) 
asola'tll = -M[w*(L 7) - hol (41) 

We shall begin our solution by noting that go and h, approach asymptotic 
values at large time, which we shall denote as g, and h,, respectively. 
These may be simply determined by suppressing the time derivatives in 
Eqs. (36) and (37); they are 

gm = [(l - E )  + C(E1-1 

h, = a/[(l - E )  + a&] 

(42) 

(43) 
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374 RElS ET AL. 

We may now define transient contributions 

and put these definitions into Eqs. (37)-(41). All except Eqs. (38)-(40) 
take the same form, with the subscripts zero replaced by t; the latter 
become 

St(0, q) = -[(I - 8 )  + ~ 1 - l  (46) 
I - &  I 

'zr(0) = (x-)[(l - E )  + a&] (47) 

The forms of Eqs. (36) and (37) now suggest that we write both g, and 
h, in the general form 

with 
.A = C cnFn(q)Tn(z) (48) 

f, = g t (q ,  z) (solid phase) (49) 

= h,(z) (fluid phase) (50) 

F, = H,(q) (solid phase) (5 1) 

= En (fluid phase) 

where the c, and En are constants to be determined. It is now easily shown 
that 

(52) T, = ,-QPm2r 

1 
(53) 

where the j?, are real constants. 
If we now put these results into Eq. (41), we find 

En = [pn cos p,, + (olM - 1) sin &]/M (54) 
which completes definition of the F, in terms of the 8,. 

arrange the result to obtain 
We next put our expressions for the F,, and T, into Eq. (37) and re- 

This is the characteristic equation needed to determine the p,. 
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CHROMATOGRAPHY IN A BED OF SPHERES 375 

As we will see below, c,, is an odd function of p,,; the terms to be summed 
in Eq. (48) are then even functions of p,, and therefore only nonnegative 
zeroes of Eq. (55) need be considered. Furthermore, Po =O (corresponding 
to the asymptotic solution already obtained), so we need determine only 
the positive roots of Eq. (55). 

It remains only to find an orthogonality relation for determining the 
coefficients c,,. 

The form of Eq. (53) suggests that we start our development of an 
orthogonality condition by writing 

Since the right side of Eq. (58) is not identically zero for our boundary 
conditions, we must examine it further. 

From Eq. (41) we may write 

".I = -MIUHn(l) - En] drl 1 

and therefore that 

(59) 
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376 RElS ET AL. 

2 

H,,(l) = En(l - Q$),/a 

Putting Eq. (62) into (60) yields 

We may now combine this result with Eq. (58) to obtain 

and therefore that 

or 
Q 1 lo q2ff,,Hrn 4 + - [P,  cos p, + (ah4 - 1) sin /Irn] MNu 

x [Bn cos P, + (uM - 1) sin P,] = 0 (66) 
which is our desired orthogonality relation. It may be written more 
conveniently by recognizing that 

so that 

where 

MQ/Nu = ~/[3(1 - E)U] 

~ ( l  - &)(HrnHn) + &EnEm = 0 

(67) 

(68) 

J: q2Hrn(q)Hn(q) dq 1 

= 3J" rzHm(q)Hn(q> dq (69) 
0 

( H m ( q ) H n ( q ) )  = 

This is of the form 
(WFmFn) = 0 

where the weighting function 

W = u (solid phase) (71) 

= 1 (fluid phase) (72) 
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CHROMATOGRAPHY IN A BED OF SPHERES 3'17 

Equation (70) is consistent with the corresponding result of Tepper et al. 

We are now in a position to determine the cn and On via Eq. (68). We 
(14). 

use the initial concentration profiles : 

gt(q, 0) = f cnHn(q) = - E )  + aE1-1 (73) 
n = l  

ht(0) = (e)[(l - E )  + a&]-' = $ cnEn 
n= 1 

(74) 

in Eq. (69) to show that 

3a(l - E ) C ; ~ :  q2H; dq + e(cnE,J2 

CnEn (75) 
- 3a(l - E )  ' (1 - &) - -  

(1 - E )  + a"C"Jo q 2 H n d q  + [(I - &) + a&] 

It follows after some manipulation that 

This completes determination of the zero-order functions. 

The First-Order Functions g1 and hl 
These functions are described by the equations 

with 
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378 RElS ET AL. 

It is clear from the form of this description that the two first-order 
expressions can be put in the form 

where 

fi = gl(q, z)RP (solid phase) (84) 

= h,(z)RP (fluid phase) (85) 

and the Fn are the functions defined above for the zero-order functions. 
Putting this form of solution into Eq. (77) yields the equation 

(86) 2 [F.d, dT1 n + FnQ/3;Tln] = ehogO (solid phase) 
n= 0 

A similar expression can be obtained from Eq. (78) if it is recognized from 
the zero-order development that 

-EnQSn2 = “aHn(1) - En1 (87) 
The result is 

2 [“.;i; dT1 n + FnQ/3?Tln] = eho2 - ho (fluid phase) (88) 
n = O  

Equations (86) and (88) thus differ both in the expressions used for the 
Fn and in their inhomogeneous parts. 

They can be used in connection with the orthogonality relation already 
devised, 

(WFnFm> = ~nrn<WFn2> 

to obtain a differential equation for the Tin:  

where 

Then 

s = &hog0 (solid phase) (90) 

= eho2 - ho (fluid phase) (91) 
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CHROMATOGRAPHY IN A BED OF SPHERES 

where 
= < WFnS)/( WFnz> 

This completes our solution in a formal sense. 
Now, from Eqs. (90) and (9 1) : 

Then 

Noting that 
m 

we find 

379 

(93) 

This result is clearly well behaved for finite P,, but it must be further 
examined for Pm = 0 (or n = 0). Now for this case 

(98) 
Do2 

co( WFo2> = 
" ] = coDo - [ - cn( W F 2 )  

This result follows from the relation 

DO2 1 

(WFO') = 3 q2~Ho2 dq (1 - 8) + T E  
S O  CO 

Here Ho is constant, and from our initial condition 

Therefore 
coHo = Do/a 

DO2 = y [ ( l  - &) + UE] 
ECO 
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and 

1 CL 

( 1  - E )  + a& 
= - 

co( WFO2) COD0 - 

Now 

so 

as it should: no term in the series for g 1  or h ,  should blow up at large time. 
The solution is therefore complete and well-behaved in the form given. 

It is instructive to examine the asymptotic behavior of the solution. 
At large time, only one term in Eq. (97) remains, and 

However, it is more convenient to determine the asymptotic behavior 
separately, which also serves to check the above solution. To do this, 
one only need suppress the time derivatives in Eq. (77) and Eq. (78) to 
obtain 

&ha2 - h ,  + N[ag,,(l) - h,,] = 0 ( 107) 
Equation (106) may be readily integrated with the aid of Eq. (80) to give 

2 'gCOhU3 + K 
Slm = -- Q 6  

where K is the integration constant. Substituting this expression into 

0 = Ehl + (1 - E ) ( g l )  

which is derived from Eq. (lo), we find 

and 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



CHROMATOGRAPHY IN A BED OF SPHERES 361 

Equations (107), (109), and (1 10) are simple to calculate and have been 
found to agree with the convergent series in Eq. (105). Further use of 
these equations will be made in the next section. 

MACROSCOPIC DESCRIPTION OF 
C O L U M N  PERFORMANCE 

For most practical purposes it is sufficient to describe the volume- 
average solute concentration 8, as expressed by Eq. (19), and to neglect 
the entire right side of this equation. We may then concentrate our at- 
tention on the relation 

where 

U(Z)  = Eh, 

E ( t )  = e($ - h i )  

Equation (1 12) is a dimensionless example of the one-dimensional con- 
vective heat transfer equation with time-dependent velocity u and dis- 
persion coefficient E. Once it is integrated for a suitable set of boundary 
conditions, fluid- and solid-phase concentration distributions may be 
obtained from Eqs. (14) and (15), respectively. It only remains to integrate 
this equation, to relate it to presently used chromatographic models, 
and to consider the importance of the time dependence of u and E. 

Explicit Descriptions of Mean Solute Concentration 

propriate boundary conditions on c are 
We shall consider in detail only the long-column limit for which ap- 

8,aOlag = 0 . as c -, fa (113) 

and use the convenient initial condition 

&c, 0) = Kc) 
It then follows (see, for example, Ref. IS) that 
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where 

RElS ET AL. 

Solutions for other initial distributions can be readily produced from 
Eq. (1 1 7 )  by superposition. 

Normally the long-column approximation used here will be acceptable. 
Where this is not the case, it is the usual practice to use Danckwerts 
boundary conditions ( I @ ,  and this will normally require numerical pro- 
cedures. This approach has already been used by Tepper et al. for a closely 
related problem with cylindrical symmetry (14). If the time dependence 
of u and E may be neglected, one may obtain a compact solution using 
the transformation of Bastian and Lapidus (17), apparently developed 
independently by Brenner (18). 

Asymptotic Behavior and Comparison with Other Approaches 

asymptotic values given by Eqs. (42), (43), (108), (1 lo), and (1 11) :  
In a sufficiently long column, u and E in Eq. ( 1  12) will approach the 

lim (~(7)) = U E / [ ( ~  - E )  + ae] s u, (1 1 8 )  
Z-+W 

and 

E E ,  (119) 

These results will perhaps be more meaningful if Eq. ( 1 1 )  is rewritten in 
terms of z and t :  

+ ;)}$ = 0 ( 1 2 1 )  
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CHROMATOGRAPHY IN A BED OF SPHERES 303 

The coefficient of the second derivative may be written as 8’ + gT. wherz 

( 122) 

may be defined as a generalized Taylor dispersion coeflcient. We shall 
defend this definition shortly. 

First we note that Eq. (121) is just the one-dimensional convective 
diffusion equation with constant coefficients. More specifically, it is a 
special form of this well-known equation describing dispersion dominated 
chromatography with local equilibrium in which the axial dispersion 
coefficient d has been replaced by (b’+gT).  If one assumes local equi- 
librium, defined by cf=cicsm, then the local fraction 9 of solute in the 
fluid phase is 

w = CLE/[(l - E )  + LYE] (123a) 

where this is just the retention ratio of the chromatographic literature. 
It is only this fraction which is free to move by convection or to be dis- 
persed axially by nonuniformities in fluid-phase motion. As a result, the 
average convective velocity is 9 u o  as stated in Eq. (121), and the effective 
average dispersion coefficient is a(&’ + gT). 

Now if there truly is local equilibrium between phases, it would be 
necessary that gS and k, both be infinitely large, and under these circum- 
stances gT would be zero. The term gT thus describes the effect of mass- 
transfer resistance and is the ddirr of Eq. (7). We thus find that Eq. (7) is 
consistent with our analysis for sufficiently long time. 

It may further be shown that gT is the two-phase equivalent of Taylor 
dispersion by paralleling Taylor’s original development (19) for our 
conditions. This is done in the Appendix. This is to be expected since our 
analysis is in effect a generalization of Taylor’s approach. 

Finally we may note that the term 4 5  in Eq. (121) is equivalent to a 
lumped-parameter mass-transfer coefficient for the solid phase of the form 

kcs = 59JR (123b) 

so that the overall mass-transfer coefficient is 

l l u  +- -- -- 
Kc kc kcs 

in accordance with the classic two-film theory of mass transfer. Further- 
more, Eq. (123b) is just the Glueckauf expression given in the Introduction 
as Eq. (6). 

We find then that for sufficiently long times our analysis is consistent 
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384 RElS ET AL. 

with the most widely used approximations. It remains to determine the 
rate of approach to these asymptotic conditions. 

Q U A NTl TAT1 VE ASPECTS : 
T H E  IMPORTANCE OF TRANSIENTS 

The primary utility of the above analysis is in providing a means for 
estimating the importance of diffusional transients, necessarily neglected 
in the more convenient lumped-parameter models, and for describing their 
effects if necessary. The large number of parameters in the above descrip- 
tion makes a comprehensive study of this type a formidable problem, 
however, and we therefore content ourselves here with a small number 
of examples. 

We chose for these examples conditions representative of current liquid- 
phase chromatographic separations : 

gs = loT6 cm2/sec 

R = lop3 to lo-' cm 

uo = 0.07 to 0.7 cm/sec 

= 0.38 

Dispersion coefficients were calculated from the correlation of Edwards 
and Richardson (20) for packed beds of nonporous beads : 

-k 7.05 gf 
1 +- 

B = 2v0R 

This equation is an empiricism tested for gases. Mass-transfer coefficients 
are taken from the correlation of Pfeffer (21) : 

k, = A(9,/2R)2/3~o'/3 (126) 

with gf taken as lo-' cm2/sec. The coefficient 

A = 1.26(1 - y5)/(2 - 3y + 37' - 2y6) (1 27a) 

where 

y = (1 - &)I13 (1 27b) 

Numerical evaluations of go, at various points within the spheres, and 
ho are obtained from the following equations: 
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CHROMATOGRAPHY IN A BED OF SPHERES 385 

Eigenvalues, p,, were determined from Eq. ( 5 9 ,  using Newton’s method. 
Calculations of g ,  and h, were made from 

sinp,, 
s t = c -  TI n 

n = t  P n  

D, = C,(& cos B, + (uM - 1) sin B,)/M (134) 

E 
(WF:> = [3(1 1 + zp.” cos2 B,, 

1 &(aM - sin2 p,, 
M Z  + (135) 

Calculations were performed on the University Univac 1110 2x2 
computer. The series contained in the above expressions were terminated 
when increments became smaller than one part in 100,000 or at 750 terms. 
All 750 terms were used only at very short times, where convergence is 
slow, due to small values of Q in the exponential terms, e-QBn2r. 
In Figs. 1 to 6 the functions ho and h, are plotted as functions of time. 

They are seen to approach the expected initial values and asymptotic 
limits. For larger spheres, transients may be important, as evidenced for 
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FIG. I. Decay of the transients of ho. a = 0.1. R = 0.01 cm. 

FIG. 2. Decay of the transients of h i .  a = 0.1. R = 0.01 cm. 
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FIG. 3.  Decay of the transients of ho. a = 1.0. R = 0.01 cm. 

I 

-I 
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-5 

-7 

-0 

-I I 

FIG. 4. Decay of the transients of h l .  a = 1.0. R = 0.01 cm. 

FIG. 5. Decay of the transients of ho. tc = 10.0. R = 0.01 cm. 
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I I I 

FIG. 6. Decay of the transients of hl .  a = 10.0. R = 0.01 cm. 

FIG. 7. Time-dependent radial profiles go. u = 1.0. R = 0.01 cm. 
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the response with R = 0.1 cm. In many practical cases, however, the 
asymptotic expressions for ho and h, ,  as expressed in Eqs. (43), (110), 
and (1 1 l), should be sufficient to describe column performance. 

In Figs. 7 and 8 the time-dependent radial profiles go and g ,  are plotted 
for a column with CI = 1.0 and R = 0.01 cm. Again, the functions ap- 
proach the correct initial values, and rapidly reach their respective asymp- 
totic limits. The time duration of the transient behavior appears to 
be the same for the fluid and solid phases. 

Integration of the general differential equation for the column allows 
breakthrough curves (i.e., exit concentrations as a function of time) to 

FIG. 8. Time 

0 42 04408 Q8 10 

.dependent radial profiles g,. a = 1.0. R = 0.01 cm. 
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390 RElS ET AL. 

be calculated. The explicit expression for long columns is 

where 2 and 5 are defined by Eqs. (1 16) and (1 17). If we assume that ho 
and h ,  can be approximated by the constant asymptotic values, this 
expression reduces to 

where 

A summary of key results for all choices of parameters used is given in 
Table 1. The steady-state combined dispersion coefficient for the fluid 
phase is given by 

(138) 
This expression is also given more simply in terms of h,  and h,,  as 

E, = & R v O [ k  - I,.] hl 00 
(139) 

Using this coefficient, we can arrive at a simple parameter expressing the 
extent of peak spreading in a column of a typical length, 50 cm: 

where W is expressed in Eq. (123a). We can see that smaller spheres con- 
tribute less to peak spreading, as expected. The contribution of mass 
transfer to dispersion is also clearly seen in CT as CL becomes smaller. 

SUMMARY 

The utility of the Gill-Subramanian expansion for analysis of chromato- 
graphic columns has been demonstrated. High order approximation of 
column behavior is possible at low computational cost. Moreover, the 
technique can accommodate even higher order approximations for the 
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behavior of fast responding columns by including more terms in the series 
for the as well as calculating additional f,. This is at the expense of 
additional computational effort. 

For many columns of practical interest, however, the transient behavior 
is short lived, and simple asymptotic expressions, as presented in this 
paper, are all that are needed to predict column performance. 

AP PE N DI X : T A Y L O R  DlSPE RS I 0  N 
IN A PACKED C O L U M N  

The convective diffusion analog for chromatographic columns is 

which is the same as Eqs. (l), (3), and (4). 

of solute is 
Now, in the near-equilibrium situation the average convection velocity 

(144) Qc, 
ECr + (1 - E)CS 

(v>  = 00 

with 
1 

cs, & -cf 
o! (145) 

so that 

( 146) 

(147) 

U& = wu, 
a& + (1 - &) ( v >  = Do 

x = 2 - <u>t 
Now define 

Then Eqs. (141) and (142) become 
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Next assume with Taylor that transients in this modified coordinate 
system and fractional variations in ac/ax are small relative to the effect 
of radial gradients. Equation (149) then takes the simplified form 

where 
c, = I?, + c; 

with Zs = mean stationary phase concentration 
c& = deviation from this mean, presumed independent of time and 

axial position 

Integrating Eq. (150) gives 

The volumetric mean concentration within the sphere is 

From Eq. (1 5 l), 
cS(R)  = Fs + cA(R) 

hence 

From Eqs. (150) and (143), we get 

Then 

Combine Eqs. (156) and (158), 

(155) 
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394 RElS ET AL. 

The total convective transport of solute relative to x is 

w* = ECf(DO - ( u ) )  - (1 - E)CSm<U) (160) 
Plug Eqs. (146), (156), and (158) into Eq. (160) to obtain 

1 
ac 

3 -9 - 
=ax 

where 
c = [or& + (1 - &)I& 

Therefore 

which is the same as Eq. (122). 
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