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UNIVERSITY OF WISCONSIN
MADISON, WISCONSIN 53706

E]

Abstract

A computationally efficient method is presented for calculating the combined
effects of intraparticle diffusion, interphase mass-transfer resistance, and fluid-
phase axial dispersion for chromatography in a column of uniform regularly
packed spheres. The method uses an extension of the generalized Sturm-
Liouville theory of Ramkrishna and Amundson to adapt the Taylor-Gill-
Subramanian dispersion analysis to two-phase systems. The primary utility
of the analysis is to determine the importance of diffusional transients and
to obtain asymptotic limiting behavior for very long columns. Simple closed-
form solutions are given for this limiting condition. Our analysis suggests
that the transients neglected in presently used lumped-parameter analyses are
in fact often small, especially for small packing diameter and low flow rates.
In addition, the Glueckauf and Coates approximation for internal diffusional
resistance is found to be a valid asymptotic limit. However, conditions do arise
in practice where transients should be considered.

INTRODUCTION

It is the objective of this development to estimate the combined effects
of intraparticle diffusion, fluid-phase boundary-layer mass-transfer
resistance, and axial dispersion in a chromatographic column. To do this
we idealize the column as a regular array of uniform homogeneous spheres
and assume the mass transfer to be described by

367
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where z = distance of any sphere center from column entrance
= distance from center of any sphere
R = sphere radius
t = time
¢; = c4(z, t) = bulk fluid-phase composition
¢s = cs(r, z, t) = local solid-phase composition
csg = ¢s(R, z, t) = surface composition of the solid phase
¢s, = volume-average composition of the solid phase
v, = interstitial mean fluid velocity in the z-direction
¢ = fractional fluid volume in column
& = effective fluid-phase dispersion coefficient, assumed known
92 = effective binary solute diffusivity in the solid phase
k. = fluid-phase (boundary-layer) mass transfer coefficient, assumed
known
a = interfacial area per unit volume of column = 3(1 — ¢)/R
o = the equilibrium ratio of fluid to solid-phase concentration,
normally a function of ¢, or cs

~
I

Integration of Eqs. (1) through (4) has proven to be a formidable task,
even for constant values of all parameters, and, so far as we are aware,
no serious attempt to use more complex models has yet been made.

A formal analytical solution to these equations has been provided by
Amundson (/, 2), but its complexity appears to have prevented its wide-
spread use. Instead it has been the practice to use one of a number of
available approximations in which at least one of the terms in the above
description has been substantially modified.

Most frequently [see, however, Rosen (3, 4)] the internal diffusional
resistance of the solid is represented by a lumped-parameter approximation
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of the form

dc

—@sgf . = kycsm — Csp) )

It is furthermore the custom to assume
k, = 595/R ©

Equation (6), which appears first to have been suggested by Glueckauf
and Coates (5) [See also Helfferich (6, p. 286)], is the correct asymptotic
expression for constant solute flux at the sphere surface. We shall have
more to say about this equation later.

In addition to the simplification represented by Eq. (5), it is a common
practice either to assume & to be zero or k_ and k, to be infinite. However,
it may be shown that for sufficiently long columns the effects of axial
dispersion and mass-transfer resistance are additive (7). The higher-
order coupling of eddy dispersion and diffusion described by Giddings
(II) cannot be treated quantitatively by any model using a uniform
packing. Either a dispersion or mass-transfer limited model may be used:

E = Eipy = 6 + Eaige @)
1 1 -1
kc - kc,lot = 7(_ + (k )d' (8)
c c/disp.

We shall also have more to say about these approximations.

An alternate approach has been to use the method of moments to
obtain approximations to integral concentration profiles. This appears
to have been done first by Smith and colleagues (see, for example, Ref.
8) for short feed pulses and has since been used by many others (9). It
has been shown by Knight (/0) that Egs. (7) and (8) are equivalent to a
second-moment analysis, which is the highest order normally attempted.

For linear systems (concentration-independent «) a large number of
useful asymptotic expressions is available for approximating the integral
profiles (11). These are particularly useful for investigating the effects of
approximations made at the microscopic level of Eqs. (1)-(8) at low com-
putational cost.

Below we suggest an alternate approach based on the Gill-Subramanian
expansion (/2) and the generalized Sturm-Liouville theory of Ramkrishna
and Amundson (13) which permits very high-order approximations at
low computational cost. It is a natural extension of a previous analysis
of transient transport in cylindrically symmetric systems by our group
19).
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We begin by expressing concentration anywhere in the system by

_ & o"e(z, )
¢ = n;o f;l(r9 t) azn (9)
where
¢ =ec, + (1 — &gy (10

Our immediate purpose then is to obtain expressions for the f,, and to
do this it will prove convenient to use scaled variables.
We thus rewrite our description in the form

39, 00, 1 %,

ot + ac - F "éc—z' == N(OCHSR - Bf) (1 1)
%%Fl = —M(absg — 0) (13)
where 0, 05 = c,/co, cs/co
T = t&/R?
{ = (z/R)(&[vyR) = z|RP
n=r/R
N = k.aR*[e€
M =kR/Zg
P = vyR/& = fluid-phase Péclet number
0 = /¢

and ¢, is a reference concentration to be chosen. We see then that the
behavior of this system is governed by the five dimensionless parameters
N, M, P, Q, and a.

Equation (9) may now be replaced by the two relations

0y = f‘, hy(7) a"y;é: 2 (fluid region) (14)
n=0
bs = i g.(n, 7) a"zz(cc; ) (solid region) (15)
n=0
where 0 is ¢/co and
h(z) = (RP)™"f, (fluid region) 16)

g, ©) = (RP)™"f, (solid region) amn
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Note that for our model the f, are functions only of time in the fluid region.
We next note that Egs. (1) and (2) may be added to obtain

8 a0, I3 aaf
xte¢qw TP

in terms of our scaled variables. The fluid-phase concentration may be
eliminated from Eq. (18) to obtain

o0 a0 h 629 @ a9

which completes our restatement of the problem.

The strategy we shall follow to obtain concentration profiles is as
follows: (a) Determine sufficient 4, and g, for desired accuracy in deter-
mining 6, and 65 from Egs. (14) and (15), and to permit integration of
Eq. (19). A systematic procedure for doing this is developed in the next
section. (b) Integrate Eq. (19) to obtain 8(z, t) to the desired accuracy
and for boundary conditions of physical interest. This is done in the
section entitled ‘“Macroscopic Description of Column Performance.”

Finally, in the section entitled “Quantitative Aspects: The Importance
of Transients™ we discuss the significance of our results.

=0 (18)

DETERMINATION OF THE RADIAL
DISTRIBUTION FUNCTIONS

We begin by putting Eq. (15) into (12) to obtain

© (({8g,\d"0 " b 10 ,ég, "0

L, ((ar)ac" * g 5€) -0 % (73 6n)6C" @0)
We next eliminate the time derivative from this expression with the aid
of Eq. (19). We thus obtain

09,09 & & B [k %9
nZD ot acn + Z gnacn[ ahOaC + 8(1)2 hl)ég—i

© (h_, o0 10 ,09,\0"0
+ Em;:i <—PT - hm——l)a_CFJ Q Z <’7 511 ac)acn (21)

Equating coefficients of like spatial derivatives yields

® [og, g
; ( + Lgn - rn)é? =0 (22)
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where
O] 2 i}
L=-=S—n*— 23
rg = 0 (24)
ry = ehoge (25)
h
r, =¢ehyg, — 890(;;% - hl) (26)

and so forth. Experience with this approach (I2) shows that only g,
and g, are normally significant, and that terms of higher order than
g, should be truly negligible under conditions of probable interest in
chromatographic operations.

Equation (22) is satisfied by

%gf +Lg,=r, 27

and it is clear from Eqs. (24)—(26) that the r, contain only terms in g of
lower order. We may thus solve the individual equations represented by
(27) by proceeding in sequence. In general, however, the r, contain con-
tributions from the 4,, and we therefore must obtain descriptions of these.

These may be obtained by putting Eq. (14) into (11) and again elimi-
nating the resulting time derivative via Eq. (19). Once again collecting
like spatial derivatives, we obtain

£ (- s0)5 =0 28

n=

which is again satisfied by

dh,jdt = S, (1) 29

where
So = Nlago(l, 7) — ho] (30)
S, = ehy® — hy + Nlog,(1,7) — Ay] 31

and so forth.

It remains to write initial and boundary conditions for the distribution
functions, including matching conditions for the g, and h,. We begin
with those conditions fixed by the nature of the system. At n = 0,

0g./on = 0 32
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At n=1,

Equation (32) is a requirement of system symmetry, and Eq. (33) follows
directly from Eq. (13).

As an initial condition we shall assume all solute to be in the mobile
phase and normalized so that {f;) is unity:

gs(n,0) =0 34)
h,(0) = dole 35
where
50" = 1, n = O
=0, n#0

This choice specializes our development, but it offers the advantage of
yielding specific results. Extension of results below to other initial condi-
tions is straightforward.

The Zero-Order Functions g, and 4,

For these the above description reduces to

gofox = 25 57 B8 (36)
dhy/dv = N(agoly — ho) 37
with
go(n,0) =0 (38)
0gofonlo = 0 (39
ho(0) = 1/e (40)
0golontly = —Mlago(1, 1) ~ ho} 41)

We shall begin our solution by noting that g, and A, approach asymptotic
values at large time, which we shall denote as g, and A, respectively.
These may be simply determined by suppressing the time derivatives in
Egs. (36) and (37); they are

9o = [(1 — &) + ag] ™! 42

hy = afl(1 — €) + o] @3)
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We may now define transient contributions
9: =90 — 9o (44
hy = hy — hy 45)

and put these definitions into Egs. (37)-(41). All except Eqgs. (38)-(40)
take the same form, with the subscripts zero replaced by z; the latter
become

9.0, m) = ~[(1 — &) + o] ™! (46)

1—¢ 1
hi(0) = < € >[(1 — &) + ag] 47)

The forms of Eqgs. (36) and (37) now suggest that we write both g, and
h, in the general form

fi = X aF(NT,(x) (48)
with
fi=9{n1) (solid phase) 49)
= h(1) (fluid phase) (50)
E, = Hn) (solid phase) (51
= E, (fluid phase)

where the ¢, and E|, are constants to be determined. It is now easily shown
that

T, = e~ 2™ (52)

1
H, = . sin B, (53)

where the f, are real constants.
If we now put these results into Eq. (41), we find
En = [ﬁn cos ﬂn + (dM - 1) sin Bn]/M (54)

which completes definition of the F, in terms of the §,.
We next put our expressions for the F, and T, into Eq. (37) and re-
arrange the result to obtain

tn g, = (5 - 47) / [ -1 + ] (55)

This is the characteristic equation needed to determine the f,.
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As we will see below, c, is an odd function of f,; the terms to be summed
in Eq. (48) are then even functions of f8, and therefore only nonnegative
zeroes of Eq. (55) need be considered. Furthermore, f, =0 (corresponding
to the asymptotic solution already obtained), so we need determine only
the positive roots of Eq. (55).

It remains only to find an orthogonality relation for determining the
coefficients ¢,.

The form of Eq. (53) suggests that we start our development of an
orthogonality condition by writing

1 1
B, L n2H,H,, dn =j Hy L2 @y,

o mdﬂn dn
dH |! 1 dH, dH,
=H, 22.n _I 2 n o m o 56
T lo " S an an (36)

and similarly

1 dH|' (' . dH,dH,
=B’ L n*H,H,dy = Hn* e L n” @ dn (57

Subtracting Eq. (56) from (37) gives

t dH dH
"2 - m'z anHmd = Hn—! - Hm_u = Inm 58)
b= ),[o" g dn |1 dn i (
as
dH, dH
g, —" =p?H,—" =0
1 dnlo” " 7" dn o

Since the right side of Eq. (58) is not identically zero for our boundary
conditions, we must examine it further.
From Eq. (41) we may write

dH,

= —M[eH/(l) - E, 59
G|, = —MEH - E] (59)
and therefore that
dH, dH
I_=H—/| — H, *
nm n dr’ 1 m dr’ 1

= H[-MaH, + ME,) — H,[— MaH, + ME,]
= M(HnEm - HmEn)Il (60)
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Now, from Eq. (37)

—E,Qp,* = N[eH,(1) — E|] (61)
and
ﬂ 2
H) = E,,<l - Q%)/a (62)
Putting Eq. (62) into (60) yields
_ M9 2 _ g2
Inm = Nu EmEn(ﬂm - ﬂn ) (63)
We may now combine this result with Eq. (58) to obtain

6 = 8.2 [ eain + (3)EE] <0 @0

and therefore that

MQ(D,D,,

1
2 r¥Y -
L w*H,H, dn + No (cncm ) =0 n #m) (65)

or

1
L n?H,H, dn + %[ﬁm cos B, + (aM — 1)sin B,]

x [B,cos B, + (aM — D)sinB,) =0  (66)

which is our desired orthogonality relation. It may be written more
conveniently by recognizing that

MQ/Na = gff3(1 — &)a] {67)
so that
ol — e}{HH, + ¢EE, =0 (68)
where
1
n*H,(n)H,(n) dn )
CHADH, @ =L =3[ rH@Hmd )
J n* dn °
[
This is of the form
{WFE,F,> =0 (70)
where the weighting function
W=a (solid phase) (71)

=1 (fluid phase) (72)
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Equation (70) is consistent with the corresponding result of Tepper et al.
(14).

We are now in a position to determine the ¢, and D, via Eq. (68). We
use the initial concentration profiles:

0:1.0) = 3 c,Hy(n) = ~[(1 = &) + og]" 73)
1 - D
h(0) = <—8—8)[(1 —9+ ™ = ¥ ok, (14

in Eq. (69) to show that

1
3a(l — s)c,,zj n*H,*> dn + &(c,E,)*
0
3ol — ¢)

! (1 -9
= e N 2
c,,j,on H, dn + i

(1 —¢) + ae 1 -9+ as]c"E" 5)

It follows after some manipulation that

_ {{2\[ B, = sin , cos B, _[Bucos g, — sin g, 7
" {<o;;) [cos ﬂ,.sil—l-ncs: /)’..] o 8)[ - b ; :l} (76)

This completes determination of the zero-order functions.

The First-Order Functions g, and A,

These functions are described by the equations

99, Q0 ,09, _
- r? 67]" on = ahogo an
% = ehy® — hy + Nlog,(1,7) — &) (78)

with

g9:(n,0) =0 (79)
dg,/énlo =0 ®0
h(0) =0 &1
0gy/onl, = —Mloag, — hi] 2

as boundary conditions.
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It is clear from the form of this description that the two first-order
expressions can be put in the form

fi = 3 FOTu) (83)

where
fi = ¢.(n,7RP  (solid phase) (84)
= h,(t)RP (fluid phase) (85)

and the F, are the functions defined above for the zero-order functions.
Putting this form of solution into Eq. (77) yields the equation

i [F,, ALy, + F,,Qﬂ,,le,,] = ¢hyg,  (solid phase) (86)

n=0 T

A similar expression can be obtained from Eq. (78) if it is recognized from
the zero-order development that

- E Q8. = N[aH,(1) - E|] (87

The result is

* ar
¥ [F,, gy F,,Qﬂ,,le,,jl = ¢hy’ — hy  (fluid phase)  (88)

n=0 d‘L’

Equations (86) and (88) thus differ both in the expressions used for the
F, and in their inhomogeneous parts.

They can be used in connection with the orthogonality relation already
devised,

(WEF,) = 0, {WF,}?)

to obtain a differential equation for the T,,,:

dT
G KWE2 + 0 Ty WE?) = (WF,S) (89)
where
S = ghogo (solid phase) (90)
= ehy> — hy  (fluid phase) 1)
Then

T, = e“Q"""L G,(z)e®=" dr 92)
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where
G,(x) = {WF,SY/[KWFE? 93)

This completes our solution in a formal sense.
Now, from Eqgs. (90) and (91):

h 1
Gn(T) <WF 2> {3(1(1 8) jo ’Iango df] + 6Enh0 - En}

082 E,
= sho {C,,e Qﬁ"z - <WF 2>} (94)
Then
2 En Qﬁmzt
T,, = e % tJ/; eho{c,, - <—We—F—2;} dr 95)
Noting that
hy = Zo c,Ee % (96)
we find
o0 -mel 2
— pp—QBnlt (1 — € f) - Dn
Ty, = ce [”"D ot + X, Pn—gp 2 K WES"

D, @ D"(ea(ﬂn’—ﬂm’)t - 1)] o7

aWED iz 0B = Ba)

This result is clearly well behaved for finite §,, but it must be further
examined for f,,=0 (or n=0). Now for this case

D L D D 0 98
Cp g cn<WFn2> = Collp — CO<WF02> = ( )
This result follows from the relation
1 D 2
(WFyY = 3'[ nraH? dp (1 — &) + —c%-s 9%
0 0
Here H, is constant, and from our initial condition
coHy = Dyla (100)
Therefore
2 DO

(WF?*) = ol ~ 6)—2— +—

= ﬁ;[(l - &) + ag] @on
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and
2
coDo — R%ﬁ = CO[DO - (1_;——‘;—:“—8] (102)
Now
Dy =h, = afl(1 — &) + x] (103)
S0
coDg — Do*/(co{ WFo?)) = 0 (104)

as it should: no term in the series for g, or /#; should blow up at large time.
The solution is therefore complete and well-behaved in the form given.

It is instructive to examine the asymptotic behavior of the solution.
At large time, only one term in Eq. (97) remains, and

_ P2 EDy
Siw = ) n; Fn(n)W (105)

However, it is more convenient to determine the asymptotic behavior
separately, which also serves to check the above solution. To do this,
one only need suppress the time derivatives in Eq. (77) and Eq. (78) to
obtain

0d dgin_,

- — wdw 106
Shcoz - hao + N[aglm(l) - hlao] =0 (107)
Equation (106) may be readily integrated with the aid of Eq. (80) to give
&g oho 1’

G1oa=—Tgr e+ K (108)

where K is the integration constant. Substituting this expression into
0=ch + ({1 — e)gy (109)

which is derived from Eq. (10), we find
2
(8 ho\[1—€  gf1 &

()Tt eiwmes)] o

and

WAVYE!
By, = ’(%‘)(H*’%) + oK ain
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Equations (107), (109), and (110) are simple to calculate and have been
found to agree with the convergent series in Eq. (105). Further use of
these equations will be made in the next section.

MACROSCOPIC DESCRIPTION OF
COLUMN PERFORMANCE

For most practical purposes it is sufficient to describe the volume-
average solute concentration 8, as expressed by Eq. (19), and to neglect
the entire right side of this equation. We may then concentrate our at-
tention on the relation

o0 a0 %0
pr u(t)éz - E(r)EZi =0 (112)

where
u(t) = ehy

E() = a<% - h1>

Equation (112) is a dimensionless example of the one-dimensional con-
vective heat transfer equation with time-dependent velocity # and dis-
persion coefficient E. Once it is integrated for a suitable set of boundary
conditions, fluid- and solid-phase concentration distributions may be
obtained from Egs. (14) and (15), respectively. It only remains to integrate
this equation, to relate it to presently used chromatographic models,
and to consider the importance of the time dependence of u and E.

Explicit Descriptions of Mean Solute Concentration

We shall consider in detail only the long-column limit for which ap-
propriate boundary conditions on { are

8,06/t =0 - as {—> 4+ (113)
and use the convenient initial condition
B(¢, 0) = 8(0) (114)

It then follows (see, for example, Ref. 15) that

1
0= Wﬂ—éexp[—zz/ﬁ] (115)
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where

Z={- .E’ u(t) dt (116)

¢ = SJ:) (—1}% ~ hl) dar’ (117)

Solutions for other initial distributions can be readily produced from
Eq. (117) by superposition.

Normally the long-column approximation used here will be acceptable.
Where this is not the case, it is the usual practice to use Danckwerts
boundary conditions (/6), and this will normally require numerical pro-
cedures. This approach has already been used by Tepper et al. for a closely
related problem with cylindrical symmetry (/4). If the time dependence
of # and F may be neglected, one may obtain a compact solution using
the transformation of Bastian and Lapidus (I7), apparently developed
independently by Brenner (/8).

Asymptotic Behavior and Comparison with Other Approaches

In a sufficiently long column, ¥ and E in Eq. (112) will approach the
asymptotic values given by Eqs. (42), (43), (108), (110), and (111):

lim {u(7)} = ag/[(1 — &) + ae] = u,, (118)
and
) g & \?
Im EOY =M= + “8]{<Rovo>
ﬁ) el—¢ 1/1  «
+ (.@s [~ 2 + ol S(M + 5)}
=E, (119)

These results will perhaps be more meaningful if Eq. (11) is rewritten in
terms of z and ¢:

20 a0 R%p,%\ %8
5+ wo5- = E(—gi’—%? = (120)

Then at large time

0_9 + oe 6_61 _ oe
ot T —¢ + a3z T [(1 — ¢) + o

(Rvg)? gl —9) 1/ 95 o\) %0
g {g "o (-9 + @l 3(1“&: + g)}p =0 (12
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The coefficient of the second derivative may be written as &' + 9 where

(Rvg)? ae®(l—¢) 1/25  «a
2= =9 % al 5(@ - 5)

(122)

may be defined as a generalized Taylor dispersion coefficient. We shall
defend this definition shortly.

First we note that Eq. (121) is just the one-dimensional convective
diffusion equation with constant coefficients. More specifically, it is a
special form of this well-known equation describing dispersion dominated
chromatography with local equilibrium in which the axial dispersion
coefficient & has been replaced by (£’ + 27). If one assumes local equi-
librium, defined by ¢,=uacs,, then the local fraction # of solute in the
fluid phase is

A = agf[(1 — &) + ag] (123a)

where this is just the retention ratio of the chromatographic literature.
It is only this fraction which is free to move by convection or to be dis-
persed axially by nonuniformities in fluid-phase motion. As a result, the
average convective velocity is Zv, as stated in Eq. (121), and the effective
average dispersion coefficient is Z(&" + 2.

Now if there truly is local equilibrium between phases, it would be
necessary that 9 and k, both be infinitely large, and under these circum-
stances 21 would be zero. The term 2, thus describes the effect of mass-
transfer resistance and is the &g4; of Eq. (7). We thus find that Eq. (7) is
consistent with our analysis for sufficiently long time.

It may further be shown that &, is the two-phase equivalent of Taylor
dispersion by paralleling Taylor’s original development (/9) for our
conditions. This is done in the Appendix. This is to be expected since our
analysis is in effect a generalization of Taylor’s approach.

Finally we may note that the term «/5 in Eq. (121) is equivalent to a
lumped-parameter mass-transfer coefficient for the solid phase of the form

k. = 59¢/R (123b)
so that the overall mass-transfer coefficient is

1 1 o

X~k + T (124)

(4 c cs

in accordance with the classic two-film theory of mass transfer. Further-
more, Eq. (123b) is just the Glueckauf expression given in the Introduction
as Eq. (6).

We find then that for sufficiently long times our analysis is consistent
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with the most widely used approximations. It remains to determine the
rate of approach to these asymptotic conditions.

QUANTITATIVE ASPECTS:
THE IMPORTANCE OF TRANSIENTS

The primary utility of the above analysis is in providing a means for
estimating the importance of diffusional transients, necessarily neglected
in the more convenient lumped-parameter models, and for describing their
effects if necessary. The large number of parameters in the above descrip-
tion makes a comprehensive study of this type a formidable problem,
however, and we therefore content ourselves here with a small number
of examples.

We chose for these examples conditions representative of current liquid-
phase chromatographic separations:

Ds
R

107° cm?/sec

1073t0 1071 cm

v = 0.07 10 0.7 cm/sec
e = 0.38

Dispersion coefficients were calculated from the correlation of Edwards
and Richardson (20) for packed beds of nonporous beads:

0.365 9, 0.5
& = 200k o, 7.05 9, (123)
14—t
Rvo

This equation is an empiricism tested for gases. Mass-transfer coefficients
are taken from the correlation of Pfeffer (21):

k. = A(D;/2R)*p,'/ (126)
with 9, taken as 10~ ° cm?/sec. The coefficient
A4 = 12601 — y5/2 - 3y + 39° — %% (127a)
where
y=>0-9" (127b)

Numerical evaluations of g,, at various points within the spheres, and
hy are obtained from the following equations:
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x i n —QBn?t 1
Jo = n;1 Cnsm ﬂﬂen 1 —e+ as (128)
_ 2 CyB,cos B, + (aM — 1)sin B,)e ™ Pn* «
ho= X " e ()
o[t [t s
cos fi, — B n (130)

Eigenvalues, f,, were determined from Eq. (55), using Newton’s method.
Calculations of g, and 4; were made from

g, = Z‘, Sin ﬂ"Tl,. (131)
hl — i (ﬁu COs ﬁn + (ajz— 1) Sin Bn)Tln (132)
n=1
o —op C,ot © C,D,(1 — e 2™
T = e [1—s+as 2 OBy
D2t Dy 2 Dy(en%0 A 1>] (133)
Cn< WFn2> Cn< WFnT> m=;0 Q(ﬂnz - ﬁmz)
D, = C. (B, cos B, + (aM — 1)sin §,)/M (134)
gy =[5 4 b o,
v——a 2 —
. <2e(onM2 DB2 3(12ﬁ e)a) cos B, sin f.
M — 1)? sin?
+ e(a M)2 sin B,,:] (135)

Calculations were performed on the University Univac 1110 2X2
computer. The series contained in the above expressions were terminated
when increments became smaller than one part in 100,000 or at 750 terms.
All 750 terms were used only at very short times, where convergence is
slow, due to small values of Q in the exponential terms, e~ 2",

In Figs. 1 to 6 the functions 4, and A, are plotted as functions of time.
They are seen to approach the expected initial values and asymptotic
limits. For larger spheres, transients may be important, as evidenced for
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the response with R = 0.1 cm. In many practical cases, however, the
asymptotic expressions for h, and #,, as expressed in Eqgs. (43), (110),
and (111), should be sufficient to describe column performance.

In Figs. 7 and 8 the time-dependent radial profiles g, and g, are plotted
for a column with « = 1.0 and R = 0.0l cm. Again, the functions ap-
proach the correct initial values, and rapidly reach their respective asymp-
totic limits. The time duration of the transient behavior appears to
be the same for the fluid and solid phases.

Integration of the general differential equation for the column allows
breakthrough curves (i.e., exit concentrations as a function of time) to

20

/

T\

(o] J
0 02 04npos 08 10

Fic. 8. Time-dependent radial profiles ¢,. « = 1.0. R = 0.01 cm,
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be calculated. The explicit expression for long columns is
Zh 1
;= [ho - -55—‘]2\—/;? exp (—Z2/4¢) (136)

where Z and ¢ are defined by Egs. (116) and (117). If we assume that A,
and 4, can be approximated by the constant asymptotic values, this
expression reduces to

_ Chloo 8haohloo 1 _(C — Shoo‘[)z
= [h‘” T 2E .t + 2E, J4/nE,T exp 4E T (137)

h
E, = 8[}% - km]

A summary of key results for all choices of parameters used is given in
Table 1. The steady-state combined dispersion coefficient for the fluid
phase is given by

E; = E/{T———a—-—-} =¢ef + (Reg)” _e¥(1 — ) 1,:—92-5- + _o_c]

where

— &+ ae 9s [(1 —¢) +oae3| Rk, 5
(138)
This expression is also given more simply in terms of k. and 4, as
1 Ay,

Using this coefficient, we can arrive at a simple parameter expressing the
extent of peak spreading in a column of a typical length, 50 cm:

where Z is expressed in Eq. (123a). We can see that smaller spheres con-
tribute less to peak spreading, as expected. The contribution of mass
transfer to dispersion is also clearly seen in ¢ as « becomes smaller.

SUMMARY

The utility of the Gill-Subramanian expansion for analysis of chromato-
graphic columns has been demonstrated. High order approximation of
column behavior is possible at low computational cost. Moreover, the
technique can accommodate even higher order approximations for the
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behavior of fast responding columns by including more terms in the series
for the f, as well as calculating additional f,. This is at the expense of
additional computational effort.

For many columns of practical interest, however, the transient behavior
is short lived, and simple asymptotic expressions, as presented in this
paper, are all that are needed to predict column performance.

APPENDIX: TAYLOR DISPERSION
IN A PACKED COLUMN

The convective diffusion analog for chromatographic columns is

dc oc d*c
F[Eti + an—zf - @@?{] = k.a(acse — ¢;) (141)
oc 950 ,0c
(l—e)a—:=(1—-8)r—zsa—r 25;5 (142)
deg
— sz | = kdacsg — <) (143)
rijr=R

which is the same as Eqs. (1), (3), and (4).
Now, in the near-equilibrium situation the average convection velocity
of solute is

fe,

(o) = vom (144)
with
1
Csm = = Cr (145)
so that
oE
(v) = vom = .@Do (146)
Now define
x=z—-{v)t (147)

Then Eqgs. (141) and (142) become

. 2

9 D50 ,0
a- a)[@—cts) — <—a—cf);| =(1-97F 5" 3”’5 (149)
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Next assume with Taylor that transients in this modified coordinate
system and fractional variations in dc/0x are small relative to the effect
of radial gradients. Equation (149) then takes the simplified form

0Cs 95 d , deg
—<@ >< > =va ar (150)
where
¢ = Csg + cg (151)

with ¢g = mean stationary phase concentration

I

¢g = deviation from this mean, presumed independent of time and
axial position

Integrating Eq. (150) gives
) ; _ <U>R2 665
CS(r) - CS(R) - 69S [l - < ) :I ox (152)

The volumetric mean concentration within the sphere is

3 R rn r2z 2 .
Csn = g3 L L L csr? sin @ dr dO d¢ (153)
1 R2() acs
=G+t a®+35 "5 (154)

From Eq. (151),

hence
1 R*(v) ocs
= ¢e(R) + 15 3, 7x (156)
From Egs. (150) and (143), we get
R\ fo¢

(%) (), = ke = e asn

Then
¢, = acs(R) — <3”zR (‘;is) (158)

Combine Egs. (156) and (158),

o [vR?\ 0Cs {v>R\ 3¢
Cr = %sm = 1’5'(@5> x §< k, ) ox (159
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The total convective transport of solute relative to x is
W* = ecp(vg — <v)) — (I — &)csnv) (160)
Plug Egs. (146), (156), and (158) into Eq. (160) to obtain

W = _<%>Rvo2[l algz(l — &) +1<93)__°‘82(1;5)__:|

0x) @5 |15(@e + (A — ¢)? * 3\Rk,) (ae + (I — ¢))°
oc
= ~ D75 (161)
where
¢ =[ae + (1 — &)Jcs (162)
Therefore
_(Rp)* ae’(l—¢) 1[Ps  «
Ir="g. =9 +wP3 Rk 5 (163)

which is the same as Eq. (122).
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